
UCRL-ID-141558

The PVODE and IDA
Algorithms

A. C. Hindmarsh

December 1 2000

U.S. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://w ww .doe. gov/bri dge

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 3783 1-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports @adonis.osti. gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22 16 1

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders @ntis.fedworId.gov
Online ordering: http://w w w .nti s. gov/ordering.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www .llnl.gov/tid/Library.html

http://w
mailto:ntis.fedworId.gov
http://w
http://www

Thy PVODE and IDA Algorit hiis*

Alan C. Hindmarsh

Preface

In October-Soveniber 2000, I gave a series of talks, tlescribing in sonif' c k t , a i l the algo-
rithms in two general-piirpose solvers - -

0 the PI'ODE sol\.r>r for systems of ordinary diffcrcmt,ial t)(l1liitio1is (ODES), i i I l (l

0 the ID-4 solver for systcms of differential-algebraic eqiiations (D.4Es).

The material \vas orgariizcd into three parts:

0 Part -4: Overvien-

0 Part B: The PI'ODE Algorittini

0 Part C: The ID.1 Algorit,hm

This document consists of the viewgraphs for the corresponding three talks.

Except for the correction of some minor errors, the talk viewgraphs are gix-cn here exactly
as presented. Each of the three sets of pages is numbered independently, with page numbers
starting at 1.

Preceding the vien-graphs, on the next four pages is a brief outline of cwli of the talks,
and a list of references. some of which are cited in the viewgraphs.

Alan Hindmarsh
Center for Applied Scient,ific Computing

'This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

1

Part A. Overview

1. ODE dy/dt = f (t,y) vs DAE F (t,y, dy/dt) = 0; DAE index

2. BDF Methods
a) Basic formulas
b) Symbolic derivation: hD = log E
c) Fixed-step vs fully variable-step vs fixed-leading-coefficient
d) Example: 3 forms of BDF2

3 . Stiffness and absolute stability
a) stiffness; example
b) absolute stability; local linear approx.; dy/dt = lambda y
c) abs. stability regions; A-stability, etc.
d) BDF absolute stability regions

4. Norms - weighted RMS via tolerances

5. Errors
a) Local Error vs Local Truncation Error vs Global Error
b) LTE = C h"{q+l] yA((q+l)} + h.0.t.
c) Error estimation:

prediction = order-q explicit analog; correction;
E(h) = est. local error = C' (predictor - corrector) + h.o,t

Set h' via ((E(h')(i = 1, E(h') = (h'/h)"{q+l) E(h)
c) Error control:

6. Solving the implicit system .
G(y-n) = 0, G(y) = { y - ga'ma f(t-n,y) -- a-n [PVODE]

Newton: M (delta y) = - G(y),
{ F(t-n, Y, (Y - a-n)/gamma) [IDA]

M approximates G' (y) = { I - gamma J [PVODE]
{ F-y + c FJ' [IDA]

Newton-direct: dense or band treatment of M
Newton-Krylov: GMRES with preconditioning
Relaxation w.r.t. gamma

ii

Part B. The PVODE Algorithm
.

1. Initial step size
Estimate second derivative; do order 1 error control

2. Storing the history - Nordsieck array = scaled derivatives
Scaling; prediction via Pascal Triangle;
Correcting the history array

3. Interpolating to output times

4. Newton iteration algorithm
a) Modified vs Inexact Newton
b) J / P update strategies; Jacobian-saving
c) Convergence test; rate estimate

5. Local error test

6. Step and order selection
a) Order selection: E(h,k) = est. local error at order k;

b) Heuristics
set h' = h'(k) via I IE(h',k)l I = tolerance; find max h'(k)

7 . Adjustments on change of step or order

1.

2.

3 .

4 .

5 .

6

7

8

Initial condition calcuiation

Initial step size
Do "order 0" error control

Storing the history - modified divided differences
Predicting; Correcting the history array

Interpolating to output times

Newton iteration algorithm
a) Inexact Newton
b) J/P update strategies
c) Convergence test; rate estimate

Local error test - on truncation and interpolation errors

Order/step selection
a) Order selection - Taylor series terms
b) Step selection - via LTE
c) Heuristics

Inequality constraints

iii

References :
- -__ -_ - - -_

[l] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equations, SIAM,
Philadelphia, 1996, Section 5.2 ("Algorithms and Strategies in DASSL").

[2] P. N. Brown, "Fixed Leading Coefficient BDF Formulas," hand-written
manuscript, October 1987.

[3] P. N. Brown, G . D. Byrne, and A. C. Hindmarsh, "VODE, A Variable-
Coefficient ODE Solver," SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1038-1051

[4] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, "Using Krylov
Methods in the Solution of Large-Scale Differential-Algebraic Systems,"
SIAM J. Sci. Comput. 15 (1994), pp. 1467-1488.

151 P. N. Brown, A. C. Hindmarsh, and L. R. Petzold, "Consistent
Initial Condition Calculation for Differential-Algebraic Systems,"
SIAM J. Sci. Comp. 19 (1998), pp. 1495-1512.

[6] G. D. Byrne and A. C. Hindmarsh, "User Docurnentation for PVODE, An
ODE Solver for Parallel Computers," LLNL Report UCRL-ID-130884, May 1998.

[7] G. D. Byrne and A. C. Hindmarsh, "PVODE, An ODE Solver for Parallel
Computers," Int. J. High Perf. Comput. Applic., 13 (1999), pp. 354-365.

[81 G. D. Byrne, "Pragmatic Experiments with Krylov Methods in the Stiff
ODE Setting," Computational Ordinary Differential Equations, J. Cash and
I. Gladwell, eds., Oxford Univ. Press, Oxford, 1992, pp. 323-356.

[91 A. C. Hindmarsh and A.'G. Taylor, "User Documentation for IDA, a
Differential-Algebraic Equation Solver for Sequential and Parallel
Computers," LLNL Report UCRL-MA7136910, December 1999.

[lo] K. R. Jackson and R. Sacks-Davis, "An Alternative Implementation
of Variable Step-Size Multistep Formulas for Stiff ODES," ACM Trans.
Math. Softw. 6 (1980), pp. 295-318.

iv

The PVODE and IDA Algorithms

Alan C. Hindmarsla

Part A: Overview

1. IVPS - ODES vs DAEs

2. Backward Differentiation Foririulas

3. Stiffness and absolute stability

4. Norms - weighted RMS via tolerances

5. Errors - local error; error control

6. Solving the implicit system - Newton variants

1

1. Initial Value Problems

ODE systems:

Y = dYld t = f (t , Y) 7 y(t0) given, y E R"

DAE systems:

F (t , Y , Y) = 0 7 y(t0) and @(to) given

Index of DAE systems:

F (t , y, @) = 0 is index-0 if aF/ay is nonsingular
(can solve for e, in principle).

with s (t7 u7 v, 11.1 F (t , y,y) = 0 is index-1 if F =

d f /au and dgldv both square and nonsingular
(can solve g = 0 for u , substitute, solve f = O for U).
(There are more general forms of index-1 systems.)

2

2. Backward Differentiation Formulas

PVODE and IDA use BDF methods. With PVODE, user
can select Adarns methods for nonstiff problems.

Basic formulas. Discrete values are t n and Yn E y (t n) .

Step size is h = t n - tn-1.

Backward Euler (BE): yn = Yn-1+ hzjn

Fixed-step BDF of order q (BDFq):

Coefficients ai, Po depend only on order q.

One of many Linear Multistep Formulas (Methods).

“BDF” because it differentiates y with backward values:
e n = (linear combination of Yn , Yn-1 , yn-2 , . . .)

Interpretation for zj = f : Solve for Yn in

Interpretation for F (t , y , zj) = 0: Solve for Yn in

3

Symbolic operator derivation.
For any sequence {xn}, define operators

Exn z xn+l (increment)
Ax, = xn+1 - xn (forward difference)

Vxn = xn - xn-1 (backward difference)
Also define 1 = identity operator. Note inverse and other
relations, and develop an algebra of operators:

E-lXn xn-1 I A = E - 1 , V = I - - E - ' .
A sequence may or may not be the set of discrete values
of a smooth function of t . When it is, we can define a
differentiation operator, D f n = . f (tn).
Infinite Taylor series for f:

Now from 1 - V = E-', get E = (1 - V)-',
1 1

hD = log(E) = log[l/(l - V)] = V + LO2 + '03 + . . .
2 3

Applied to y (t) :
1 1

3 hyn =z V y n + T V 2 y n + - v 3 y n + . . .

For BDFq, truncate this series at Vq term.

4

How to vary the stepsizes? Three ways:

(1) Use fixed-step BDF but interpolate at a spacing equal
to the new stepsize h'.

[This is the method in LSODE and its variants.]
Behavior can he unstable if step changes are frequent.

(2) Use fully variable-step form of BDF:
4

i=l
Yn an,iYn-i + JLnP,,OYn

I
1

I 1 4 k?!- L - L ' 4l-, ' hrl

Coefficients a n , i , pn,o depend on stepsizes h, = t n - tn.-1;

hrl--1) - . , hn-q+l. If h = max{hn,. . . , hn--q+l } , then the
coefficients are uniquely determined by:

[This is the method in EPISODE and its variants.]
Disadvantage: variation of hn/?n,O makes Newton matrix
hard to keep current.

5

(3) Use "fixed-leading coefficient" form of BDF.
A compromise. The choice in PVODE and IDA.

but at the cost of an extra term Pn,lon-1:

Formula has fixed-step value of Pn,O = Po = 1/(d&1j --1)

a

Coefficient Pn > 1 vanishes when stepsizes are equal.

Coefficients are defined via interpolating polynomials:
Given Yn-1,

rnial wP(t) , of degree - < q, by
7 Yn-ql Yn-1, define the predictor polyno-

wP(tn- j) yn-j (j 1 . . - 4) 7 LjP(tn-1) yn-1 .

Corrector polynomial w"(t) is defined in terms of wP(t)
and the unknown value yn by:

More constructively, get predicted values yn(o> = wP(tn)
and jln(o) = WP(tn) , and then build w"(t) as

w"(t) = U P @) + c (t) (y n - yn(0)) where

C(tn - h n) . . C(tn - q h n) = 0 C(tn) = 1 .
Then the BDF is

6

4 1

(2) Variable-step:
With = hnIhn-1,

1 2 Yn 2 p + 1 [(P + I)2Yn-l - p yn-2 + (p + l)hnzjn]

(3) Fixed-leading-coefficient :
With p hnIhn-1,

7

3. Stiffness and Absolute Stability

Stiffness .
Characterized by presence of a strongly damped mode.
In a linear approximation, there is a mode ext with
Re(X) << 0, such that the corresponding time constan
r = -l/Re(A) is << the t scale of interest in solution.
Problem is not (yet) stiff if y (t) is changing on scale of r.

Simple example:

= 2t + 10'((t2 - y> , t E [o, 11 , y(0) given .

Here y = t2 + yOc-'//' 7 T = 10- '. Beyond t = 107
(say), solution time scale is - 1. But damped mode wit21
time constant r is still present, so problem is stiff there.
Stepsizes - r if the wrong method is used.

Graphically: Among all the particular solutions, a few
are smooth (in quasi-equilibrium), but most are strongly
damped toward a smooth solution. In contrast, the solu-
tions for a nonstiff uroblem are more nearly parallel.

I

Absolute Stability (for ODES).
Look at how a perturbation in initial conditions generates
a perturbation in the solution: y (t) + y (t) + w (t) .
For I j = f (t , Y) , get

W = f (t , y + w) - f (t , y) z J (t) w (t) , where

In a local linear approximation, look at simply W = Jw
with J constant.

Diagonalize J . Some nonsingular matrix transforms J
into a diagonal matrix with eigenvalues A.

The true solution of W = Jw is a linear combination of
exponent ials ext .

Using linearity of the BDF, the BDF solution is the same
linear cornbination of the BDF solutions of zj = Xy.

Define the Absolute Stability Region of any ODE method
as the set of hX for which the method is stable, i.e.
damped, for I j = Xy at stepsize h.

So you can judge the stability of any given method on
a given class of problems simply from the Absolute Sta-
bility Region of the method combined with the spectral
properties of the problems.

9

Method is “A-Stable” if A.S.R. includes the left half-plane
{ R e (x) < O}; i.e. whenever the ODE = Xy is stable,
so is its numerical solution.
True for BDFl = BE and BDF2. Dahlquist proved there
is no A-stable Linear Multistep Method of order > 3. -

All the BDFs up to order 6 are (‘A(a)-Stable’’: A.S.R.
includes a sector -a < arg(-hll) < a for some a < n/2.

includes a half-plane left of some d < 0, and method is
accurate in an adjoining rectangle centered at the origin.

10

BDF Absolute Stability Regions:

Method is stable outside the closed curve shown.

BDFl = BE:
BDF2 is also A-stable

{ IhA - 1) > 1) (A-stable)

Order 6 is close to failing to be A(a)-Stable or stiffly
stable, so is excluded in the BDF solvers.

11

4. Norms

The user must supply tolerances,

rtol = relative tolerance (scalar)

atol = absolute tolerance (scalar or vector)

These define weights for the solution vector y:

wz = rtol IyzJ + atol' (i = I . . . Nj

To control errors in 92 relative to wz, use a weighted norrn.

To eliminate bias when expanding problem size (as in
mesh refinement), we use a root-mean-square norrn.

So all error/convergence tests use a Weighted RMS norrn

on any error vector v.

Roughly (ignoring effects of RMS), ll'uJ(< 1 means that

lvzl < wz for ,211 i

and roughly that

either Ivil/JIJil < rtol or Ivz) < atolz

So a unit vector in this norm is really a small vector.

12

5 . Errors

Local errors.

Local Error = error committed on one step, taken with
exact solution values for past values.

Local Truncation Error = residual of the Linear Multistep
Formula when an exact solution is inserted. (Depends on
how one normalizes the LMF.)

LE and LTE are different, but close. Both are O(h"')
for a method of order q. With suitable normalization,
LE = LTE +O(hq+').

Global Error = error in yn (after n steps) from exact
initial value yo, reflecting cumulative effect of local errors.
Convergence theorems show Global Error = O(hq), under
suitable conditions.

For any LMF, LTE = Cnh'+ly('+l)(tn) + O(h'+"), where
C n is a' computable function of q and (in variable-step
cases) of the past q stepsizes h,.

13

Error estimation.

Predict yn as Yn(O) = W P (t n) , the explicit analog of BDF:

Similar asymptotic analysis of yn - yn(0) gives

Yn - Pn(0) - - C n h4fly("+')(tn) + O(h 4+2)

for another known constant Cn.
So within O(hq-+2),

(LTE in yn) - - C n h,V+ly(V+l)(tn)

So we define the Estimated Local Truncation Error as
ELTE Ck(Yn - Yn(0))) with C , = CnICn.

14

Error control.

Given E(h) = ELTE for the tentative step taken at order
q and stepsize h, we accept the step if llE(h)(l < 1, and
redo the step otherwise.

In either case, we want a new stepsize h’ for which the
current or next step will succeed.

Asymptotic formulas imply E(h’) ==: (h’/h)q+lE(h),
ignoring variation in Cn.

With this approximation, the value of h’ that makes
IIE(h’)lI = 1 is given by

Ih’/hl“+’l/E(h)(l = 1

or
l / (q + l) h’ = h/IIE(h)lI

We insert a heuristic factor < 1 into this formula to
compensate for estimation errors etc.

Order selection.

Under certain conditions, we choose a new order q‘ as well
as a new step size. This is based on similar ideas, is done
quite differently for PVODE and IDA.

15

6. Solving the Implicit System

Nonlinear system.

At every step, a nonlinear system G(yn) = 0 must be
solved for the new vector yn.

Write the BDF as y, = a, + y&, y = - h&. Then

Newton iteration.

The initial guess is the predictor value yn(o).

The iteration is M[yn(nL+ll - y,(,,,] = -G(’n(ml)
with Newton matrix M z G’(y) at some nearby value y.

For PVODE: G’(y) = I - y J , J aflay.

Newton-Direct solution:
Dense or band LU factorization of M ; backsolve Mx = b.

Newton-Krylov solution:
Solve Mx = b by preconditioned GMRES.
Precondition on left or right in PVODE, left only in IDA.

16

Linear systlern relaxation (Nev-ton-dir. t.:t case).

Newton matrix used is either

AZ! = I - Y J or M = d F / d g t (l/y)dF/dy
with 3~ = the value of hPo when M was last evaluated.
Even if the rest of AZ has not changed, 7 f y can degrade
convergence.

We help by doing relaxation: use Ay = - C A P (= instead
of Ay = -G-'G, with scalar e. What e?

Consider a linear ODE system, e = J y (F = zj - Jy)
with J constant. Then either

G ' = M = I - y J , M = I - y J or

In either case, the error at each iteration is reduced by
the error matrix E = I - cM-'M, and convergence rat'e
is the spectral radius p(E).

G' = ?-'I - J , = ?-'I - J .

Observe that for A = an eigenvalue of J , the correspond-
ing eigenvalue of E is

€ = l - C (1 - yx) y-l - x
1 - yx

We expect Re(X) < 0 but otherwise S p (J) is unknown.
Choosing c to minimize rnax{ 161 : Re@) < 0} leads to

2 2

17

Shorthand notation for the step algorit'hm:

P = prediction

E = evaluation of f or F

C = correction

Each step is: P (E C)m.

Stopping test.

Basis for error control is valid only if yn is a,n accurate
solution of the implicit equation. So stopping test must
(try to) insure that iteration error in final yn(m) has a
relatively small effect on the local error test quantity.
1.e. tolerances for Newton stopping and for local error are
strongly related.

Test is On ll!ln(m+1) - !ln(m)II, not On IIG(!ln(rn+l))ll.
(No final E.) Reasons:
(a) G magnifies the error in stiff ODE case;
(b) IlGll is nonsense in DAE case; weights not valid.

18

The PVODE and IDA Algorithms

Alan C. Hindrnarsh

Part B: PVODE

1. Initial step size

2. Storing the history - Nordsieck array

3. Interpolating to output times

4. Newton iteration algorithm

5. Local error test

6. Step and order selection

7. Adjustments on change of step or order

8. Example PVODE run

1

0. Introduction

PVODE solves the initial value problem

Methods available are:

variable-order (1-12) variable-step Adams-Moulton,

var.-order (1-5) var.-step (fixed-leading-coeff.) BDF

For stiff problems, use BDF.

Discrete values are t n and Yn E y (t n) , with step sizes
hn t n - tn-1.

In terms of predicted values Yn(o> and zjn(0), the BDF of
order q has the form

Yn - Y ~ (o > = hnPO(Yn - en(,)) 7

where Po = I / (C ~ = ~ 1/j).

Desirable absolute stability properties of BDF methods
for stiff problems comes from single (implicit) 7J term in
linear multistep formula Yn = Z ~ = I ajyn-3 + hPo3/n

Where the algorithm is method-specific, only the BDF
methods are covered here.

2

1. The Initial Step Size

First step will be with BDFl = Backward Euler.
For this step, LTE= ?h 1 2 j j (t 0) + O(h3).
We want an h that roughly solves

lh1211ij(to)11/2 =

I LTE

1 .

Must estimate i j o = $ (t o) , knowing yo, zjo = f(to,yo).

For a given guess h, estimate

?Jo

Now iterate.

To get started, use bounds for (hl based on initial time to

[f(to + 6, Yo + hyo) - zjO]/h -

and first requested output time tout.

Lower hound is

h L = 100 (unit roundoff) - max

Upper bound is hu = O.llto,t - tol,
downward to ensure that

possibly adjusted

Start iteration with h = d m sign(t,,,t - t o) .
Stop when l / 2 < h /h < 2 (good enough, since the error
control in first step may reset h) .

3

2. The Nordsieck History Array

1 1
1 2 1
1 3 3 1
1 4 6 4 1

Recall: Data {Qn, y n , Yn-1, - , Yn--q+l } defines a unique
polynomial wg(t) of degree < - q [earlier denoted ~ " (t)] .

The Nordsieck array is defined as the N x (q + 1) array
of scaled derivatives of w = w; at t,:

where h = current (tentative) step size.

Prediction of x, from ~ ~ - 1 :

Xn(0) = X n d q 7 A, = order (q + 1) Pascal Triangle.

Done in place with repeated additions, not multiplies:

for = ~ . . q {for j = q...r"~ 1xj-l -+ xj-' + XJ' } 7

where 2.7 = column j of x,-1 (j = O...q).

4

Correcting the history array.

The array x,(~) represents predictor polynomial L& (t)
via scaled derivatives at t , with step size h = h,.

After computing and accepting Y n , in order to start the
next step, we must represent wE(t), which interpolates
the data set Ij,, g n , . . . , ~ , + 1 - ~ . We do this by looking at
A(t) @(t) - WE-&) , then adjusting the columns of
xn(o) by the scaled derivatives (/J / j !>M)(t , ,) .

Recall that the BDF is

h(Gn - Yn(0)) - Q O (Y ~ - Yn(0)) 7

where -a0 = Cy=l l /j . (The reason for this notation is
that the BDF is often written in the alternate form

From the various interpolation conditions,

n (t n) = Yn - Ijn(0) = (- a o / h) A n

From its zeros and values at t,, we can write

3

for some scalar p. We have

So (0- + hp)A, = -a& implies p = -(a + ao)/h.

Define dimensionless quantities

and

At the same time, it helps to change from t to the dimen-
sionless variable t - t n

h X -

Then

and 1 + (t - t ,)p = 1 +XI(*.

We get

where A (x) is the scalar polynomial
n(t) = A(x)An 7

Now the scaled derivatives of A(t) at t n are just the
Taylor coefficients of A(x)An at x = 0:

We can find the coefficients ! j of this polynomial easily.

tory array is sirnply

Denoting x,, = [zn, 0 1 xn, . . . xi], the correction to the his-
7

Note that

7

3. Interpolating to Output Times

Suppose the user requests the solution at t = tout, which

As the computed approximation to Y (t O u t) , we return to
the user

was just reached: tn-1 < tout 5 t n or tn-1 > tout - t n .

Yout = w(t0ut)

using w = W E .
As given by Taylor series based at t n ,

Given the Nordsieck array xn, with columns x',

We also provide, on request, solution derivatives

In particular, this gives y(tout) cheaply and accurately.
Evaluating f (tout, Yout) is probably more expensive, and
stiffness makes it less accurate.

8

4. The Newton Iteration Algorithm

Recall we arc solving G(y,) = 0 for gn. where
G(Y) = Y - rf (tm Y! - a, and y hPo = h/&.

Newton iteration is MAy = -G(zJ+-& n-here M is
some approximation to G'(y) = I - y J arid J df/ay.

PVODE (together with its serial t w h CVODE) does two
flavors of Newton iteration:

(a) Modified Newton in direct cascs:
M fixed (usually out of date);
linear residual z 0 via LU niethod;
relaxation w.r.t. 7 f y in M .

(b) Inexact Newton in Krylov case:
M current, using matrix-free product Jv;
precondition (left or right) with P = M ;
linear residual nonzero but controlled.

In any case, the initial guess is

Yn(0) = w:-l(tn) = Kh"l 0 of X,(O) 7

where L & ~ represents the data at end of step n - 1.

If a re-evaluation of M or P is done during step n, it is
done at (tn, ZJ,(~)), to maximize its effectiveness.

9

Jacobian/Preconditioner strategies.

The Newton matrix M = I - rJ (direct cases) and pre-
conditioner P ==: M (Krylov case) are usually expensive.
Balance between evaluationlpreprocessing the matrix fre-
quently (high cost) and infrequently (slow convergence).

We update M or P if:
* starting the problem (n = 1)

* > 20 steps have been taken since last update

* just had a non-fatal convergence failure on this step

* just had an error test failure on this step

On an update of M or P, we rnay re-evaluate J (direct
cases) or instruct user to re-evaluate Jacobian data in P
(Krylov case). Or we rnay use a saved copy of J for M ,
or instruct user to use saved Jacobian data to form P.
On an update of M or P , we also re-evaluate if:

* starting the problem

* > 50 steps have been taken since the last evaluation

* just had conv. failure with J old and IT/? - 11 < .2

* just had a convergence failure forcing h reduction

10

Convergence test.

The final computed value yn will have to satisfy a local
error test IIYn - Yn(0) 1) < - € L E . We want to insure that the
iteration error yn - z ~ ~ (~) is small relative to €LE:

IJiteration error in I J ~ (~) I I < O.IELE .

For this, estimate linear convergence rate constant R:
We initialize R to 1; reset R = 1 when M or P is updated.
After computing a correction 6, = Y , , (~) - Yn(m-1) 7 we
update R if m > 1 as

Now

So the convergence test is

If convergence is superlinear (possible in Newton-Krylov
case), then the error in yn(m) is even smaller.

We allow at most 3 Newton iterations, and declare the
iteration diverged if any ~ ~ 6 , ~ ~ / ~ ~ 6 m - ~ ~ / > 2.

If convergence fails with J or P current, cut h t- h/4.

11

5 . Local Error Test

For BDFq, at current step size h = hn,
Local Truncation Error = Ch 4+1 y (g+ l) (t n) + O(h 4+2)

for some C , where the ratios hj/h are assumed bounded
(above and away from zero). To express C , recall

4
[j = (t n - tn-j)/h 7 - c l / j 7

j=1

and also define

Then

There is a similar asyrnpotic formula for the LTE of the
predictor formula for yn(o), with coefficient

For derivation, see Jackson & Sacks-Davis [lo].

12

The local error test is:

()estimated LTEJI - < 1 , or
f - IlnnII = lI?/n - Yn(0)II 5 l / lC I = € L E .

If test passes, go on to correction x, ,(~) += x,

If test fails,

(a) restore xn-l from xn(o) by repeated subtra

(b) reset step size to h’ = solution of

(h’/h) q f l I / nll = % E / 6

ti ns

(1/6 = safety factor, to account for deviations from
asyrnpt otic behavior)

(d) retry the step (predict, correct, etc.)

If error test fails repeatedly (7 times) or (hi reaches a
user-supplied minimum, give up.

After 3 error test failures, we force an order reduction if
q > 1, or restart from scratch if q = 1.

The ratio h’/h is limited (above) to .2 after 2 error test
failures, and to .1 after 3 failures.

13

6. Step and Order Selection

Basic idea: Pick the order such that the polynomial of
that degree best fits the discrete data on the given t mesh.

First rule: Keep the current q and h if the current step
had either a convergence failure or an error test failure.

Step selection at current order.

Since the error test (IAnII - < € L E passed,
qs-1 (h’lh) II nII = € L E

may define a larger step size. With safety factor, use

as the tentative step size ratio at order q.

Order selection timing.

We consider a change of order only after taking q+ 1 steps
at order q: a heuristic with partial theoretical support.
In that case, consider orders q’ = q - 1 (if q > 1) and
+ q + 1 (i f q < 5) .

In a future version of PVODE: Following any step with
4 - > 3, force a reduction to order q - 1 if h is limited by
the boundary of the Absolute Stability Region.

14

Consider order q - 1.

The Local Truncation Error at order q’ = q - 1 is

LTEq-l Cq-lh 9 (q) (tn) +O(h q+l) .

By a derivation similar to that for the order q error test,

Here h41J(q)(tn) is easily estimated as q!xz. So
est.LTEq-l = Cq-lq.xn 1 4 .

We set a tentative new step size as before:

(h’/h)qlI/est.LTEq-ll/ = 1/6 , or

Consider order q + 1.

The Local Truncation Error at order q’ = 4 + 1 is
q+3 (t n) + O(h) 7

LTEq+l- - C q+l /p+”Y(q++2)

(We saved An-1 and Cn-1 at end of step n - 1 if the
waiting period was about to end.)
Insert into LTE equation to get est.LTEq+l.
Use a smaller safety factor = 1/10 for tentative h':

= 37q+l - 1 0 I 1 est . LT E,, 1 1 1 I&- h'lh = [
Order selection.

We want the next step size to be as large as possible:

37 = max{37q-1, Vq, 37q+l}

Set q' = q or q Zt 1 accordingly, and h' = qh.

Two final rules:
Don't bother changing q or h if q < 1.5.
Limit h'/h to lo4 on step 1, and to 10 otherwise.

16

7. Adjustments on Change of Step or Order

Changes to h, q, and x, decided on at end of step n are
made at start of step n + 1, in order not interfere with
calculation of interpolated output values.

Actions when q’ f q:

Adjust x, to reflect new set of interpolated data.

Additional act4ions whenever h’ # h:

Rescale the 2; by rf’ (j = L q) , set h = h’, q = q’.

Adjustment for q’ = q - 1

Array x, represents w(t) = uK(t), of degree q , which
interpolates Qn7 yn7 ~ ~ - 1 , . . . 7 Yn-q+1-

We need an array .s;, representing w(t), of degree q - 1,
which interpolates e,, y,, y,-~, - . . 7 Y n - q - t ~

As before, do this by determining the difference poly-
nomial, A(t) = w (t) - w(t) (of degree q) . We have

A(t,) A(t,-i). . . A(t,-q+a) = O = A(tn)
and the coefficient of tq in A(t) is the same as for u(t),
namely y F) / q ! = zq/hq. n This implies

17

In terms of x = (t - tn)/h and t j = (tn - tn-j)/h,

We compute the coefficients d j of d(x) = x~II:-~(& +x),
then adjust x, (in place) by

Adjustment for q' = q + 1.

We need ann array x,, representing

Determine A = LJ - w (of degree q + 1). We have

(t) , of degree q + 1,
which interpolates I&, yn , Yn-1, . . . 7 Yn-q-

A(tn) A(tn-1). . = A(tn-q+l) O = A(tn)
and A(tn-q) yn-q - W (t n - q) An-q. Therefore

Setting t = t , + hx, we have

18

Now recall the polynomial A(t) = wE(t) - uE-l(t) we
constructed to correct xn(o> to 2,. We have

Substituting, we get

We compute the coefficients d j of the polynomial d (x) ,
compute the constant d, and then adjust x, by

Here x:+' = 0, so this creates a new column q + 1 for the
history array.

Reference: Brown notes [a]

8. Example PVODE Run

Ozone model: two-species reaction-advection-diffusion in
2D with diurnal kinetics; time span = 24 hours.
(See PVODE User Document [6]).

Solution uses BDF + GMRES + left preconditioning;
P is block-diagonal with 2x2 blocks (no spatial coupling).

Rough history of order q and step size h:

t : 0 0.04s 0.3s (11-56s) ... 12.4h ... 24h

q: 1 2 ... 3 ... 4 ... 5 ... 4 ... 3 ... 2 .. (3-5) .. 5 5

h: 0.4rris ... 7rns 0.03s (2-131s) (6- 14rnin)

Total time steps NST = 467

Total nonlinear iters. NNI 586. Average = 1.255/step

Total linear iters. NLI = 588. Average = 1.003/Newton

Total P setups NSETUPS = 72. Average = 6.5 steps/setup

Total P evaluations NPE = 8. Average = 58.4 steps/eval.

Total error test failures = 23

Total Newton convergence failures = 0

Total Krylov convergence failures = 0

20

The PVODE and IDA Algorithms

Alan C. Hindrnarsh

Part C: IDA

1.

2.

3.

4.

5.

6.

7.

8.

Initial condition calculation

Initial step size

Storing the history

Interpolating to output times

N ew t on iter at i o 11 algor i t 11 rn

Local error test

Step and order selection

Inequality constraints

1

0. Introduction

IDA[ACH,Taylor] evolved from
DASPK [Brown, ACH, Petzold], a variant of

DASSL [Petzold].

Change of notation: F(t, y, y’) = 0 , y’ e dy/dt ,
y E RN.

Discrete values are t, and yn E y(tn), with step sizes
h, = t, - t,-1.

In terms of predicted values y,(o) and yk(o), the fixed-
leading-coeficient BDF of order k has the form

where
k . 1

a, e - E T .

Order k varies between 1 and 5.

2

1. Initial Condition Calculation

For the DAE system F (t , y , y ') = 0, the user is to
supply to and initial condition vectors yo and y;. But it
rnay be difficult or impossible to supply these consistent
with the DAE system.

Problem 1. Suppose F = 0 corresponds to an ODE sys-
tem with constraints, also called a "semi-explicit index-1''
system:

U' = f (t , u , v) , g(t ,u ,v) = O (dgldv nonsingular) .

User may know uo = u(to), but not have a consistent 'uo.

Problem 2. For general F , suppose y; is given but yo
is unknown, and d F l d y is nonsingular.

In both cases, IDA can help the user out.

Initialization Problem 1.

Allowing u' to be implicit, take the more general form:

with aflau' and dgldv both square and nonsingular.
IDA actually accepts a more general class of problems:
the differential components u and algebraic components
v can be permuted, and the constraints rnay be implicit.

Because we also need ub to start the integration, define

Then we want to solve 4 (x) = 0 for x. The Jacobian,

is nonsingular (subscripts denote differentiation).

We want to do Newton iteration, but do not want to set
up any new machinery, beyond what is involved for the
integration of the DAE system. The integration involves
solving Newton correction systems J A Y = - F , with

J = dF/dy + adF/dy’ , a = -a&?.
The user is either supplying J or letting IDA generate J
by difference quotients (direct cases), or is supplying and
solving a preconditioner P F=: J (Krylov case).

For the case of Problem 1,

Now we play a trick. Artificially set h, and a = l / h ,
and approximate @(x) with a scaled form of J : Let

Note that as h -+ 0, J -+ 4’.
4

Given that we can realize the operator J-' , we can

We must pick h small enough to make J ==: 4' but not so
small that J is too badly conditioned.

realize JP1 = S- 1 J -1 , an approximate inverse of 4'.

The basic IC Calculation algorithm:

1. Pick an appropriate small hi set a = l / h .

2. Form J , or have user set up preconditioner P.

[:I* 3. Set r = -F(to, yo, yh) at current guess x =

4. Solve J p = r by direct or precond. Krylov solve.

5. Set Ax = S-'p (= J-'r) and x +- x + AX.

6. Loop to Step 3 until llpll small.

7. If converging slowly, update J or P arid continue
from Step 3 with current x.

8. If diverging, reduce h and restart with original x.

Impact on user: must input integer vector ID identifying
differential components u and algebraic components a.

Extends to index-0 case: solve F(t0, y0,y;) = 0 for yb
(no 'u or g). But the convergence test on (1pl1 must be
resealed to remove its artificial near-proportionality to h.

Initialization Problem 2.

Here we simply want to solve 4(yo) f F(to, yo, j$) = 0.

The Jacobian 4’ = Fy is simply the value of the system
Jacobian J with a = 0. So we use the same algorithm as
in Problem I , but pass a = 0 at each point where J or
P is evaluated and preprocessed (no h, hence no Step 8).

In both cases, the actual algorithm is more complicated.
See [5]. The main complication is a linesearch backtrack-
ing algorithm to improve global convergence. It guar-
antees a reduction of / 1 $ 1 1 2 at each Newton step, 11-ith
relaxation: x + x + XAx.

2. The Initial Step Size

PVODE uses an algorithm based on the Local Trunca-
tion Error of the order l method: estimate y: and solve
h211y:11/2 for h.

This is not feasible in IDA; F = 0 provides no way to
get y” analogous to PVODE’s differencing of y’ = f.

IDA resorts to using the LTE of the “order 0” method,
yn+l = yn. For the order 0 step y1 = yo, the leading term
of the LTE is hyb, and we have y;. So as the tentative
value of h take the solution of 1lhy;Il = 1.

Adjustments to this choice:
add a safety factor;
restrict to a fraction of first output interval Itout - tal;
attach the proper sign.

The result is:

3. Storing the History

Classical divided differences of { yn}:

For a smooth y (t) ,

Modified divided differences:

First define the t differences (j = 1, . . . 7 k)

For j = 0 , . . . , k , the modified divided differences are:

Exception at n = 0:

as if a BDFl step were taken from y-1 to yo with ho = hl.
8

We will also need some other scalars:

Interpolating polynomial.
Given Ynl Yn-1, . - . I Yn-k, there is an interpolating poly-
nornial w n (t) of degree < - k that interpolates this data
set. In terms of classical divided differences, this is

F o r j = O , . . . I I C , the j - t h term above is

4. Interpolating to Output Times

Suppose the user requests the solution at t = tout, which
was just reached: tn-1 < tout 5 t , or t,-l > tout - > t,.
IDA returns to the user two vectors

Yout = w(t0ut) 7
f

Yout - = W1@out) ,
where w (t) = W n (t > .

Use the +j(n) and $j(n) to compute

The interpolant is continuous, but not C'.

Implementation:

11

5 . The Newton Iteration Algorithm

Newton iteration is J A Y = -G(yn(m)), where J is some
approximation to G’(y) = d F / d y + adF/dy’.

IDA does two flavors of Newton iteration:

(a) Modified Newton in direct cases:
J fixed (usually out of date);
linear residual ==: 0 via LU method;
relaxation w.r.t. fi f a in J .

(b) Inexact Newton in Krylov case:
J current, using matrix-free product Jv;
precondition on left* with P ==: J ;
linear residual nonzero but controlled.

*Note: Left preconditioning is required to make norm
1 I linear residual 1 1 meaningful; 1 1 J A y + G 1 1 is meaningless
in general, since the weights are weights for y .

In any case, the initial guess is yn(0) = Wn- l (tn) , where
w,-1 represents the data at end of step n - 1.

If a re-evaluation of J or P is done during step n, it is
done at (G27 Yn(0)l Yn(0) I), to maximize its effectiveness.

12

Jacobian/ Precondit ioner st rat egies.

The Newton matrix J (direct cases) and preconditioner
P F=: J (Krylov case) are usually expensive.
Balance between evaluation/preprocessing the matrix fre-
quently (high cost) and infrequently (slow convergence).

We update J or P if:
* starting the problem (n = 1)

' convergence failed non-fatally with old J or P

On an update of J or P , Jacobian data is always re-
evaluated from scratch. Two-level update strategy of'
PVODE would require saving both d F / d y and dF/dy ' .

13

Convergence test.

We want to insure that the iteration error yn - yn(m) is
small relative to y itself, specifically:

lliteration error in Z J ~ (~) (I < 0.33 .

(Contrast PVODE's nonlinear test constant, which is pro-
portional to the local error test constant.)

For this, estimate linear convergence rate constant R:
Corrections are dm = Yr,q(m> - Yn(m-1) for m = 1 , 2 , . . .
If rn > 1, we set

1
R = (l l ~ m l l / l l ~ l l l) s *

We stop the Newton iteration if R > 0.9.

Now Suppose R satisfies l l&+I
Then

k2 + . . . implies

So when rn > 1 and R - < 0.9, we set S = R/(1 -
Then for any rn, the convergence test is

but for m = 1 this uses an old value for S.
14

If convergence is superlinear (possible in Newton-Krylov
case), then the error in yn(m) is even smaller.

We initialize S to 20, reset S = 20 each time J or P is
updated, and reset S = 100 on a step with a f G. This
encourages recalculation of R on a major change in the
Newton matrix.

If m = 1, we make an additional test, and stop the New-
ton iteration if I1611I < * 0.33, because such a 61 is
probably just noise and so not appropriate for use in R.

We allow at most 4 Newton iterations.

If convergence fails with J or P current, cut h t- h/4.

If convergence fails 10 times, give up

Krylov convergence test.
We control the preconditioned linear residual to be small
compared to the allowed error in the Newton iteration:

IlP-'(Jx + G)I(< 0.05 0.33 .

(Because the generic SPGMR solver uses Lz norms of
scaled vectors, it is given a tolerance of 0.05 0.33
in order to obtain a WRMS-norm test.)

15

6. The Local Error Test

The BDF can be written in the alternate form, expressing
hnyn as a series in the q$: I

where
k

j=1
0 a (n) = - c q (n) .

The true solution y (t) (if sufficiently smooth) satisfies

in which the q$ are evaluated on the solution y (t) .
In this series, $j(n) is O(hj) as the stepsizes all go to
zero, hounded by h.

The Local Truncation Error of the BDF is the remainder
in the formula when evaluated on a smooth solution.
So the LTE is

This has been shown to he asymptotically correct for fixed
stepsizes and for somewhat more general conditions.

Using the interpolatory conditions of the predictor and
corrector polynomials, one can also show that

Thus the estimated LTE is

IDA requires that llELTE,II - < 1. But it also requires
that the interpolation error in u,(t) is bounded by 1 in
WRMS-norm for t in the last step interval [tn+ t,,]. The
principal term of this interpolation error can be bounded
bY

wk+l(n) llh+l(4 I1 *

So the Local Error Test in IDA is:

[Note that this coefficient involves h,, h,,-l, . . . , h,,-k.

1.e. BDFk is treated as a (k + 1)-step method.
BDFl = Backward Euler is treated as a 2-step method.]

Optional altered Local Error Test: If y has algebraic com-
ponents v that are coupled to the ot,her components u,
it is sometimes best to control the local error only in u.
The ODE-based LTE theory is less likely to apply to 'u.

For this option, use must input bit vector ID identifying
u vs 'u. IDA then forms a masked copy of the reciprocal
weight vector w-l for use in the Local Error Test.

17

7. Step and Order Selection

Special initial phase: For the first few steps, until
* the local error test fails, or
* the order is reduced, or
* k = 5 (the maximum order),

we raise the order by 1 and double the step size.

IDA’S step/order selection uses Local Truncation Error
estimates that apply in the fixed-step case, even though
the last k + 1 step sizes may not have been constant.

At fixed h, the leading term of the LTE at order k is

1 hk+l y ik+l)
k + l

To estimate this, we use another set of constants,

q (n)
h”,(j - l)!

so that

Actual order choice is not based on maximizing h, but on
requiring (roughly) that the Ilh j y (j) I I be monotonically
decreasing for j near k . Estimate hiy?) as jaj(n)g5j(n).
This helps indirectly with BDF stability limit problem.

18

(a) Actions

Set order k

before passing the Local Error Test.

test quantities :

ELTEk = E k = ak+l(n>ll&k+l(n)ll

Set order k - 1 test quantities (if k > I):

Set order k - 2 test quantities (if' k > 2):

Set the new order to:

ki = k - 1 if k > 2 & rnax(T,+T,+2) 5 Tk or
k 2 8~ Ti 5 T2/2

ki = k otherwise .

Then do the Local Error Test.

19

Actions if Local Error Test fails:

Restore {q&}[and {$j}f to step n - 1 values

Set k = k'

Set r = h'/h according to asymptotic hk+' behavior
of LTE, but use fixed-step LTE estimates, with sa'fety
factors:

1

r = 0 . 9 / (2 E k) m 7

adjusted so that 25 - < r - < .9
0 On second failure, set r = .25

0 On third and later failures, set k = 1, r = 25

Set h +- hf = rh

Retry step at order k , step size h

0 Give up after 10 error test failures

20

(b) Actions after passing the Local Error Test.

No further action if: k’ = k - 1, or k = 5, or k was raised
in previous step. If last k + 1 steps were at constant order
k < 5 and step size h, consider order k + 1.

Set order k + 1 test quantities:

Case k = 1: Set k + 2 if T2 < T1/2.

Case k > 1:

Set k + k - 1 if T k - 1 < r n i n (T k , T k + l } ;

Else set k + k + 1 if T:+1 < T: ;

Else leave k unchanged (T k - 1 > Tk 5 T k + 1) .

In any case, set tentative step ratio
1

r = h’/h = 1/(2E:)1;+1

using new k and corresponding estimated LTE Ek.
To increase h, we must be able to double i-t:

If r > - 2, take h’ = 2h ;

If r - < 1, adjust to make .5 - < r < - .9, set h’ = rh ;

If 1 < r < 2, set h’ = h .

21

8. Inequality Constraints

IDA user can impose constraints on y cornponentwise, by
way of an input vector with 5 choices:

yi > 0, 92 > - 0, yi - < 0, yz < 0, yi unconstrained.

Following the Newton iteration, if otherwise successful,
we test resulting y = yn(m) for satisfaction of constra'ints.
Test returns mask vector M (MZ = 0 if OK, 1 if not OK).

If there are any failures, compute a constraint violaftion
vector V, such that ~2 = yZ-Vz would pass the constraint
test: hut just barely. (Vz = 0 where Mi = 0.)

E.g., if constraint is yz - > 0, but yz < 0, then VZ = yz.

If constraint is yz > 0, but yz - < 0, then VZ = yz - 0 . 2 ~ 2 ,
where w is the vector of error weights,

wz = rtol lyzl + atolz .

V is set similarly for constraints yz - < o , yz < o .

Since the Newton convergence test is

/lerror in yn(m))(5 0.33 ,
we accept y = y - V instead of y if (JVI(- < 0.33.

22

Actions if IlVll > 0.33:

We declare a convergence failure of the Newton iteration.
and cut the step size. Ratllier than cut by an arbitrary
factor like 1/4, we estimate a new h’, based on the failure:

constraint is yi > - 0, but yz < o (arid ykv1 2 u), then
a linear approximation of yZ(t) crosses zero at tn-1 + h‘,
given by L

%-I

i

Yn-1

Yn-1 - 2

i - yz t Tq
= r . h‘lh =

I I
t - I

n V ‘
J

The same is true if the constraint is y2 - < 0, but yi > 0.

So a new step size valid for all components is given by

To cover the strict inequality case, we apply a safety factor
of 0.9 to r .

If r = 0, because some yk-l = 0 but yi has the wrong
sign, we can only hope that some small value of h’ will
produce a valid yz. Therefore, we restrict r to r - > 0.1.

In any case, we set h t- rh, and try the step again. As
before, give up after 10 such failures.

23

Inequalitv d constraints in IC Calculation:

The linesearch process finds a corrected d u e of the vector
x: (= a mix of y and y’ components) between current x
and x + Ax.

Before setting X by the unconstrained algorithm, we test
the y components of x + Ax for satisfaction of the con-
straints. If not satisfied, we compute so that x + XOAx
will (just barely) satisfy the constraints.

Then restrict the subsequent X choice to 0 < X < - Xo.

24

